Isolation and chemical conversion of two novel prostaglandin endoperoxides: 5(6)-epoxy-PGG₁ and 5(6)-epoxy-PGH₁

Ernst H. Oliw

Department of Pharmacology and Department of Alcohol and Drug Addiction Research, Karolinska Institutet, Box 60400, S-104 01 Stockholm, Sweden

Received 6 April 1984

5(6)-Epoxy-PGG₁ and 5(6)-epoxy-PGH₁ were isolated after incubation of microsomes of RSV with ³H-labelled 5(6)-epoxy-C20:3 for 45 s at 37°C. The endoperoxides were methylated and characterized by conversion to prostaglandins. In buffer, the endoperoxides were converted to methyl-5(6)-epoxy-PGE₁ and methyl-5(6)-epoxy-PGE₁, while treatment with SnCl₂ reduced the endoperoxides to methyl-5-hydroxy-PGI_{1α} and methyl-5-hydroxy-PGI_{1β}. Significant amounts of methyl-5(6)-epoxy-HHD were also formed. The endoperoxides could be separated by silicic acid chromatography and when 1 mM phenol was present in the incubation, 5(6)-epoxy-PGH₁ was obtained as the main product.

Arachidonic acid Prostaglandin Cytochrome P-450 Metabolism HPLC GC-MS

1. INTRODUCTION

The isolation of the prostaglandin endoperoxides PGG₂ and PGH₂ was reported in [1-3]. The prostaglandin endoperoxides were soon realized to be of considerable biological interest [4]. They are key intermediates in the biosynthesis of prostaglandins, thromboxanes and prostacyclin and exert biological effects, which are different from many of their metabolites [1-4]. Consequently, many stable analogs of prostaglandin endoperoxides have been developed [5].

5(6)-Epoxy-C20:3 is one of the 4 epoxides formed from arachidonic acid by cytochrome

Presented at the 1984 Winter Prostaglandin Conference, Keystone, March 20-24

Abbreviations: PG, prostaglandin; RSV, ram seminal vesicles; Me₃Si, trimethylsilyl; 5(6)-epoxy-C20:3, cis-5(6)-epoxy-8,11,14-eicosatrienoic acid; 5(6)-epoxy-HHD, cis-5(6)-epoxy-trans-8,11-heptadecadienoic acid; GC-MS, gas chromatography-mass spectrometry; HPLC, high-performance liquid chromatography; UV, ultraviolet

P-450 in the liver and renal cortex [6–8]. This epoxide was recently found to be metabolized to prostaglandins by fatty acid cyclooxygenase [9]. The main products were identified as 5(6)-epoxy-PGE₁, 5-hydroxy-PGI_{1α} and 5-hydroxy-PGI_{1β} [9,10], which all were assumed to be derived from the unstable 5(6)-epoxyprostaglandin endoperoxides, 5(6)-epoxy-PGG₁ and 5(6)-epoxy-PGH₁. The isolation of these endoperoxides as methyl esters is described here.

2. MATERIALS AND METHODS

2.1. Materials

Arachidonic acid (99%) and sodium p-hydroxymercuribenzoate were purchased from Sigma. [³H]Arachidonic acid (100 Ci/mmol) and [¹⁴C]arachidonic acid (56 mCi/mmol) were obtained from the Radiochemical Centre, Amersham, England. Methoxyamine HCl and N,O-bis(trimethylsilyl)trifluoroacetamide were obtained from Pierce. Liquefied phenol was from Fisher. Silicic acid (Silicar CC-4) was from Mallinckrodt. Other chemicals were from Merck. HPLC was performed as in [9,10]. Radioactivity

was determined with liquid scintillation [9]. RSV were obtained from the Department of Physiological Chemistry, Karolinska Institutet. 3 H-labelled 5(6)-epoxy-C20:3 (21 and 0.1 mCi/mmol) and 14 C-labelled 5(6)-epoxy-C20:3 (56 mCi/mmol) were synthesized as in [9,11]. Methyl-5-hydroxy-PGI_{1 α}, methyl-5-hydroxy-PGI_{1 β}, methyl-5(6)-epoxy-PGB₁ and methyl-5,6-dihydroxy-PGB₁ were synthesized as in [9,12].

2.2. Experimental

Microsomes of RSV were resuspended in 0.1 M KH₂PO₄/K₂HPO₄ buffer (pH 8.0) with 1 mM sodium p-hydroxymercuribenzoate and 1 mM EDTA. In some experiments 1 mM phenol was added. Incubations were performed for 45 s in a water bath at 37°C by addition of the microsomal suspension to an equal volume of buffer, which was kept at 37°C and contained the substrate. 3Hlabelled 5(6)-epoxy-C20:3 (15-20 \times 10⁶ dpm) was incubated with microsomes from 0.5 g RSV in a total volume of 4 ml, while 1.5-2 mg epoxide (added in 30 µl ethanol) were incubated with microsomes from 6 g RSV in 44 ml. The two incubations were combined, acidified to pH 4 (0.05 M HCl) and immediately extracted twice with cold diethyl ether. The ether extracts were kept on ice and dried over MgSO₄. After evaporation, the residue was dissolved in methanol (0.5 ml) and an ether solution of diazomethane (-20°C) was immediately added in excess. After 1 min the solvents were evaporated to dryness and the residue dissolved in dry acetone.

2.3. Chromatography

The endoperoxides were dissolved in 30% diethyl ether in hexane and applied to an open column of silicic acid (1 g), which was eluted with 80 ml. The eluent was then changed to 50% (60 ml) and to 80% diethyl ether (60 ml) in hexane. Fractions of 5 ml were collected. The column was finally eluted with ethyl acetate. HPLC was performed as described in table 1.

2.4. Chemical conversion of endoperoxides

Reduction with SnCl₂ in methanol (5 mg/ml) was performed as in [3]. The endoperoxides were also allowed to decay in 0.1 M K₂HPO₄ buffer (pH 7.4) with 1 mM EDTA for 30 min at 37°C [2,3].

2.5. Analyses

The GC-MS analyses were performed on a quadrupole mass spectrometer (Finnigan 4000) equipped with a data acquisition system (Incos). An open capillary column of fused silica (20 m SE-54 CB) was operated isothermally at 270 or 280°C. Splitless injections were performed with a 'falling needle' device [13]. The MS conditions were: electron energy, 70 eV; emission current, 0.2 A; temperature of ion source, 300°C. C values were estimated from the retention times of saturated fatty acid methyl esters (C20-C26). The UV analysis was performed with Zeiss Spektralphotometer PM 6 using ethanol as solvent.

Table 1

Elution volumes of prostaglandins on reversed-phase HPLC

Compound	Elution volume (ml) (55:45:0.2)	Compound	Elution volume (ml) (65:35:0.2)
5-HO-PGI _{1α}	126	5-HO-PGI _{1α}	35
5-HO-PGI ₁₈	98	5-HO-PGI ₁₈	30
5(6)-Epoxy-15-		5(6)-Epoxy-HHD	72
hydroperoxy-PGE ₁	94	5(6)-Epoxy-PGB ₁	44
5(6)-Epoxy-PGE ₁	78	· · · · · · · · · · · · · · · · · · ·	
5,6-(HO) ₂ -PGB ₁	81		

All compounds were chromatographed as methyl ester derivatives on $10 \,\mu m$ octadecasilane silica (7.8 × 300 mm, Nucleosil). The eluent was methanol-water-acetic acid as indicated (v/v). Flow rate was 1.5-2 ml/min and fractions were collected every minute

2.6. Derivatization

Synthesis of Me₃Si and Me₃Si-O-methoxime derivatives was performed as in [6,9,10]. Chlorohydrin adducts of epoxides were obtained as in [10].

3. RESULTS

3.1. Conversion of 5(6)-epoxyprostaglandin endoperoxides to known prostaglandins

Following incubation of ³H-labelled 5(6)-epoxy-C20:3 with microsomes of RSV and extractive isolation, 35-50% of radioactivity was recovered. The methylated crude extract from one experiment was divided into two parts. One part was reduced with SnCl₂ and the polar products were separated by reversed-phase HPLC as shown in fig.1A. Two major peaks of radioactivity appeared, which had the same elution volume as authentic methyl-5hydroxy-PGI_{1\alpha} and methyl-5-hydroxy-PGI₁₈ (table 1). The products could be conclusively identified as these compounds by GC-MS and by differences in C values (Me₃Si derivative [9]). The other part was allowed to decompose in buffer and the polar products were separated by reversedphase HPLC (fig.1B). The most polar peak of radioactivity (peak I) contained methyl-5(6)epoxy-PGE₁, which was identified by GC-MS of the chlorohydrin adduct (Me₃Si-O-methoxime derivative; [10]) and by conversion to methyl-5,6dihydroxy-PGB₁ by treatment with 0.1 M KOH (UV absorbance maximum at 278 nm; mass spectrum of the Me₃Si derivative [10]). Treatment of the material in peakII (fig.1B) with base also resulted in formation of a compound with maximal UV absorbance at 278 nm. Following reduction with GSH [2] and methylation, a mass spectrum of methyl-5,6-dihydroxy-PGB₁ was obtained. Finally, reduction of the material in peak II with SnCl₂ converted it to a major product, which had the same elution volume as methyl-5(6)-epoxy-PGE₁ on reversed-phase HPLC (fig.1C) and the product was identified as this compound by GC-MS as described above. The material in peak II was thus identified as methyl-5(6)-epoxy-15hydroperoxy-PGE₁ (cf. [3]).

3.2. Separation of methyl-5(6)-epoxy-PGG₁ and methyl-5(6)-epoxy-PGH₁ on silicic acid Addition of ¹⁴C-labelled 5(6)-epoxy-C20:3 at

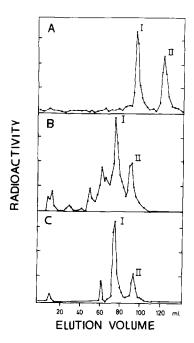
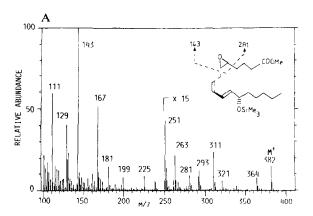



Fig.1. Reversed-phase HPLC of polar products derived from methyl-5(6)-epoxy-PGG₁ and methyl-5(6)-epoxy-PGH₁. (A) Endoperoxides were reduced by treatment with SnCl₂ in methanol. Peak I, methyl-5-hydroxy-PGI_{1β}; peak II, methyl-5-hydroxy-PGI_{1β}. (B) Endoperoxides were allowed to decompose in buffer. Peak I, methyl-5(6)-epoxy-PGE₁; peak II, methyl-5(6)-epoxy-15-hydroperoxy-PGE₁. (C) Part of the material in peak II of the chromatogram in B was reduced with SnCl₂ and rechromatographed as shown. The main product (peak I) was identified as methyl-5(6)-epoxy-PGE₁. Column, 10 μm octadecasilane silica (7.8 × 300 mm); eluent, methanol-water-acetic acid (55:45:0.2). Flow rate

the time of the extractive isolation showed that most of the substrate was eluted from the silicic acid column with the first 1–2 fractions of 30% diethyl ether in hexane. On changing the eluent to 50% ether, one major peak of radioactivity eluted and another peak eluted with 80% ether in hexane. The material in both peaks was converted to methyl-5-hydroxy-PGI_{1\text{\t}

3.3. Identification of methyl-5(6)-epoxy-HHD

In buffer or by reduction with $SnCl_2$, the endoperoxides were also converted to a product, which was less polar than the prostaglandins on reversed-phase HPLC (table 1). This compound was identified as methyl-5(6)-epoxy-HHD as follows: the UV analysis showed an absorbance maximum at 231 nm indicating the presence of two conjugated *trans* double bonds [13]. A mass spectrum is shown in fig.2A (Me₃Si derivative). Strong signals were noted at m/z 382 (M⁺), 364 (M⁺ – 18, loss of water), 311 (M⁺ – 71), 293 (M⁺ – 99, possibly loss of water from m/z 311), 292 (M⁺ – 90), 281 (cf. inset, fig.2A), 263 (possibly

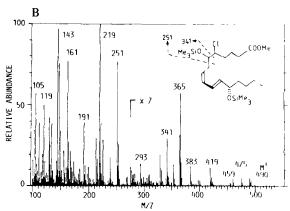


Fig.2. (A) Mass spectrum of methyl-5(6)-epoxy-HHD (Me₃Si derivative). (B) Mass spectrum of one of the chlorohydrin adducts of methyl-5(6)-epoxy-HHD, methyl-5-chloro-6-hydroxy-trans-8,11-heptadecadieno-ate (Me₃Si derivative). The natural abundance of ³⁵Cl (77%) and ³⁷Cl (23%) gives a characteristic appearance of fragments containing chlorine. The insets show important fragments of the mass spectra, which were normalized to the most abundant signal above m/z 100.

381 – 18), 251, 225, 199, 181, 167, 143 (inset), 129 and 111. The base peak was m/z 73 and the C value was 21.1. The GC-MS analysis of the chlorohydrin adducts (Me₃Si derivative) showed that two major products were formed. The mass spectrum of the 5-chloro-6-hydroxy adduct (C value 22.7) is shown in fig.2B. Signals were noted at m/z 490 (M⁺), 475 (M⁺ – 15), 459 (M⁺ – 31), 419 (M^+-71) , 383, 365 (M^+-125) , loss of Me₃SiOH and Cl), 341 (cf. inset), 292, 251 (cf. inset), 219 (251-32, loss of methanol), 191, 161,143, 119, 105 and 73 (base peak). The 5-hydroxy-6-chloro adduct (C value 22.9) also showed signals at m/z 490, 475, 459, 419, 383 and 365. Other strong signals were noted at m/z 353, 242, 225, 203 (cleavage between C5 and C6), 191, 173, 171, 143, 129 and 73 (base peak). The UV and GC-MS analyses were consistent with the proposed structure.

4. DISCUSSION

Recent reports on the potent effects of 5(6)-epoxy-C20:3 on the release of hormones from isolated pancreatic islets, the median eminence and rat pituitary cells [14–16] stimulated interest in the

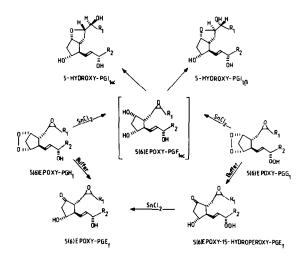


Fig. 3. Summary of the chemical conversion of 5(6)-epoxy-PGG₁ and 5(6)-epoxy-PGH₁ to prostaglandins. The compound within brackets, 5(6)-epoxy-PGF_{1 α}, has not been isolated, but 5-hydroxy-PGI_{1 α} and 5-hydroxy-PGI_{1 α} are likely to be formed from this intermediate by intramolecular hydrolysis of the 5(6)-epoxide by the hydroxyl at C9 (9). $R_1 = (CH_2)_3COOCH_3$; $R_2 = (CH_2)_4CH_3$.

possible metabolism of this epoxide to biologically active products. This report shows that 5(6)-epoxy-C20:3 is metabolized by fatty acid cyclooxygenase to two prostaglandin endoperoxides, 5(6)-epoxy-PGG₁ and 5(6)-epoxy-PGH₁. The endoperoxides were characterized by their chemical conversion into known products as summarized in fig.3. The endoperoxides were also partly transformed into 5(6)-epoxy-HHD.

Phenol stimulates the peroxidase activity of the prostaglandin synthesizing enzymes [17]. In the presence of this cofactor 5(6)-epoxy-PGH₁ was obtained as the main product. This is in agreement with [18] and addition of phenol may be advantageous since PGG compounds are less stable than PGH compounds. PGG compounds can thus be non-enzymatically transformed into the corresponding 15-keto derivatives [18].

It will be of interest to determine whether 5(6)-epoxyprostaglandin endoperoxides are formed in vivo and to determine their biological effect.

ACKNOWLEDGEMENTS

Supported by grants from the Swedish Medical Research Council (06523), the Swedish Society of Medical Sciences, Magn. Bergvalls Stiftelse, Jeanssons Stiftelser, Sv. Tobaksbolaget and funds from the Karolinska Institutet. I wish to thank Dr M. Hamberg for valuable advice and I. Lundén for expert technical assistance.

REFERENCES

- Hamberg, M. and Samuelsson, B. (1973) Proc. Natl. Acad. Sci. USA 70, 899-903.
- [2] Nugteren, D.H. and Hazelhof, E. (1973) Biochim. Biophys. Acta 326, 448-461.
- [3] Hamberg, M., Svensson, J., Wakabayashi and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. USA 71, 345-349.
- [4] Samuelsson, B. (1981) The Harvey Lectures, series 75, 1-40.
- [5] Malmsten, C. (1976) Life Sci. 18, 169-176.
- [6] Oliw, E.H., Guengerich, F.P. and Oates, J.A. (1982) J. Biol. Chem. 257, 3771-3781.
- [7] Oliw, E.H. and Moldéus, P. (1982) Biochim. Biophys. Acta 721, 135-143.
- [8] Chacos, N., Falck, J.R., Wixtrom, C. and Capdevila, J. (1982) Biochem. Biophys. Res. Commun. 104, 916-922.
- [9] Oliw, E.H. (1984) J. Biol. Chem. 259, 2716-2721.
- [10] Oliw, E.H. (1984) Biochim. Biophys. Acta, in press.
- [11] Corey, E.J., Albright, J.O., Barton, A.E. and Hashimoto, S. (1980) J. Am. Chem. Soc. 102, 1435-1436.
- [12] Oliw, E.H. (1984) submitted.
- [13] Van den Berg, P.M.J. and Cox, T.P.H. (1972) Chromatographia 5, 301-305.
- [14] Hamberg, M. and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. USA 71, 3400-3404.
- [15] Falck, J.R., Manna, S., Molte, J., Chacos, N. and Capdevila, J. (1983) Biochem. Biophys. Res. Commun. 114, 743-749.
- [16] Capdevila, J., Chacos, N., Falck, J.R., Manna, S., Negro-Vilar, A. and Oieda, S.R. (1983) Endocrinology 113, 421-423.
- [17] Snyder, G.D., Capdevila, J., Chacos, N., Manna, S. and Falck, J.R. (1983) Proc. Natl. Acad. Sci. USA 80, 3504-3507.
- [18] Lands, W.E.M. and Hanel, A.M. (1983) in: New Comprehensive Biochemistry (Pace Asciak, C. and Granström, E. eds) vol.5, pp.203-223, Elsevier, Amsterdam, New York.
- [19] Graff, G. (1982) Methods Enzymol. 86, 376-385.